
ABSTRACT

One of the most dif ficult problems in the first stages of
automatic speech recognition (ASR) is the identification
of consonantal place of articulation (CPA). It is kno wn
that the acoustic correlates for CPA reside largely in the
pattern of formant transitions preceding v ocal tract
closure and follo wing release, b ut common speech
preprocessing techniques make only a limited attempt to
capture these spectral dynamics in the representation
which they pass on for recognition. In order to test
alternative preprocessing strategies, we have prepared a
multilingual set of VC and CV v ocalic transition
segments and then compared the baseline performance of
human perception of CP A in this dataset with the
performance of tw o common ASR techniques.
Representaions initially tested were concatenated mel
cepstra and mel ceptra plus cepstral differences.

Keywords: formant transitions, place perception,
Kohonen map, Gaussian mixture classifier

1. INTRODUCTION

1.1 The importance of spectral dynamics

It is well established that the tw o main sources of
spectro-temporal information governing the perception
of CPA [4,6,8,9] are:

• the characteristics of the static release or closure
spectrum (to be referred to as the RC spectrum)

• the formant transitions o ver a period of order
50 ms preceding consonantal  closure and
following consonantal release [4].

While the greatest concentration of CPA information is
generally in the release or closure (RC) spectrum, the
relative weight of these tw o sources of information
depend on vowel context and noise conditions.

The value of formant transition patterns is that
they reflect the articulatory gestures to wards or a way
from the target consonant, even when the consonant itself

is not fully realised [2,3]. High performance in ASR is
therefore dependent on the effective exploitation of these
patterns across time as well as across frequenc y.
However, the techniques commonly used for speech
coding prior to recognition, such as cepstral coefficients,
plus first and possibly second order cepstral dif ferences,
are able to capture only a part of these dynamics. 

By comparing the performance of human
perception with a range of dif ferent ASR techniques in
identifying a multilingual set of VC and CV v ocalic
transition segments, weshould be able to identify the
principle areas in which present speech preprocessing
techniques are deficient, and possibly dra w some
conclusions about how the coding of spectral dynamics
can be improved.

1.2 Separating dynamic cues from static 

We aim here to e xamine the role of formant transitions
preceding consonantal closure and following consonantal
release in determining CPA, in a multilingual set of
purely vocalic VC and CV transition se gments. In work
such as [3] the whole interval around the transition centre
was used in perception tests, and else where [6,7] for
machine recognition. In separating the vocalic transition
region from the consonantal release or closure, we are
focusing on just one of these tw o important sources of
information.

By separating the vocalic region on one side of the
RC spectrum from the v oicing or frication on the other
side of this spectrum, as well as the RC spectrum itself,
we have also systematically removed voice onset time
(VOT) information, another strong cue for CPA. With RC
spectra and VOT removed it is not surprising that these
tests were not easy for either humans or machines. 

2. EXPERIMENTAL DESIGN

2.1 Database preparation

The data for our CP A identification tests consists of
35 ms voiced speech segments taken from immediately
before consonantal closure and after consonantal release,
i.e. from the vocalic portions of the transitions only. The
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full data set w as made up from all combinations of the
following attributes from the hand labelled EUR OM.0
“number passage” corpus, giving 9000 segments :

• 5 languages (English, Danish, Dutch, German, 
Italian)

• 5 speakers

• 5 examples

• 2 sexes

• 2 contexts (VC, CV)

• 3 vowel places of articulation

• 2 consonant manners (voiced, unvoiced)

• 3 consonant places of articulation

The phoneme labelling used is close to SAMPA (Speech
Assessment Methodology Phonetic Alphabet), with
place-manner group labels as shown in Table 1.

2.2 Human CPA perception tests

The human perception test was taken by 10 male and 10
female listeners from each of tw o nationalities: German
and Dutch. Each listener w as tested on VCs and CVs
separately, on either male or female speech. Each test set
comprised one e xample of each transition pair place-
manner category from each male or female speak er,
making up 225 e xamples, with the response menu
appearing as in Fig.4.

The test set was presented in a different random order for
each subject, with each 35ms stimulus played twice in
short succession, then repeating e very three seconds,
until a response w as recorded. In this paper we present
only a summary of the full analysis of these perception
test results which will be published else where for their
interest to phonetics. Results in Table 2 are for German
male and female subjects combined.

2.3 Machine CPA recognition tests

Every transition in the data set, minus the perception test
set, was used for ASR training. The human perception
test set was used for testing. The automatic recognition
systems tested were the K ohonen Self Organising Map
(SOM) [1] and the Gaussian mixture classifier (GM) [1].
Each 35 ms speech se gment was parametrised as 3
frames of 12 Mel Frequenc y Cepstral Coef ficients
(MFCC) (zeroth or energy coefficient excluded). Frames
were 15 ms at 10 ms centres.

2.3.1 Data representations tested

The three data representations tested were formed from
three consecutive MFCC frames (f1,f2,f3) as follows:

Static (f1 + f2 + f3)/3

Implicit dynamic (ID) (f1, f2, f3)

Explicit dynamic (ED) (f1, f2, f3, f2-f1, f3-f2)

  Fig.1 shows 10 mix Gaussian 
classifier ASR recognition 
score for pattern vectors 

constructed as static: 
(f1+f2+f3)/3, implicit dynamic: 
(f1,f2,f3) and explicit dynamic: 

(f1, f2, f3,f2-f1,f3-f2).

Fig.2 shows the effect of 
varying the number of Gaussian 
mixture components for the best 

scoring representation.

Fig.3 shows the effect on GM of 
refining the parameters 

obtained by data clustering by a 
number of EM iterations.
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Table 1.

Phoneme place-manner group labels



2.3.2 Kohonen map tests

Various SOM configurations were tested. Best results
were obtained with a 12 x 12 grid, after 500 training
iterations through the full training set (epochs). Update
radius and learning rate used exponential decay, with half
lives of proportion 0.3 and 0.3 of the fix ed total number
of iterations, and initial radius and learning rate of 12 and
0.2. Performance was by optimised using a majority vote
from the top k = 2 response classes, having tested k from
1 to 10.

2.3.3 Gaussian classifier tests

The GM classifier was tested with between 1 and 20 mix
components. Both full and diagonal covariance matrices
were tested. Although pattern v ector components were
correlated, diagonal covariance was found to gi ve
significantly better results. Parameter estimation used an
initial clustering algorithm followed by an Expectation
Maximisation (EM) based iterative refinement procedure
[1]. EM iteration is only theoretically guaranteed to
converge to a local optimum solution, so it was important
that the clustering algorithm used should obtain an initial
estimate close to the global optimum.

The clustering used w as a splitting algorithm in
which, starting with all data in one cluster , in each
splitting stage a new cluster is assembled for which the

ratio of the resulting total between cluster square
Euclidean distance to the total within cluster square
distance is maximum.

 EM iteration did not significantly impro ve
performance here unless the training set included the test
data. This suggests that for the limited amount of training
data available, EM iteration only resulted in overfitting.

3. RESULTS

Table 2 shows CV and VC CPA confusion tables for the
perception test and for the best GM classifier.

The GM classifier g ave best results with the
Explicit Dynamic representation [Fig.1] - which is
similar to that used in e xisting high performance
CDHMM based ASR systems. Ten mixes  [Fig.2], with
diagonal covariance, achieved the best compromise
between model flexibility and overfitting [Figs.2,3].

The SOM g ave best results with the Static
representation, but these were well belo w GM classifier
performance. It appears that the SOM is not able to tak e
advantage of dif ference coefficients, even though these
are known to carry useful information. This may be due
to the Euclidean distance measure being less than
optimal when zero and higher order differences share the
same data space. This problem of relati ve scaling does

  Test results pooled for 20 German subjects
 average 41.0% correct  average 47.9% correct

      |     bV     dV     gV|    tot |     Vb     Vd     Vg|    tot

  ----------------------------------      ----------------------------------

    bV|   51.4   22.2   26.4|   1500        Vb|   52.9   19.9   27.3|   1390

    dV|   35.4   38.2   26.4|   1500        Vd|   30.5   44.4   25.1|   1500

    gV|   40.2   26.4   33.4|   1500        Vg|   30.0   23.4   46.6|   1400

  ----------------------------------      ----------------------------------

   tot|   1905   1302   1293|   4500       tot|   1612   1270   1408|   4290

  Test results for statistical (10 Gaussian Mixture) classifier
av. 46.2% correct average 48.1%  correct

      |     bV     dV     gV|    tot          |     Vb     Vd     Vg|    tot

  ----------------------------------      ----------------------------------

    bV|   43.3   41.3   15.3|    150        Vb|   42.1   48.6    9.3|    140

    dV|   12.7   80.7    6.7|    150        Vd|   10.7   74.7   14.7|    150

    gV|   25.3   60.0   14.7|    150        Vg|   17.9   56.4   25.7|    140

  ----------------------------------      ----------------------------------

   tot|    122    273     55|    450       tot|    100    259     71|    430

Table 2

Table 2 shows consonant place confusion matrices, in CV and VC context, for German listeners. Percentage confusion scores 
are shown for human perception (top) and GM classifier (bottom). Voiced and unvoiced place groups are pooled and labelled 

b, d, g, while all vowels are grouped into one group, labelled V. Row is true class, and column is class identified. GM 
classification shows very strong “d” dominance, whereas human perception shows a slight “b” dominance, with errors more 

evenly distributed between classes.



not arise in the case of diagonal co variance GM, where
each component is treated independently.

Perception test results were v ery similar for all
combinations of speaker and listener nationality. ASR
test results were also similar for dif ferent speaker
nationalities. However, ASR results were consistently
different from perception results, and in a similar way for
each of the five languages tested.

4. DISCUSSION

While the CPA error rate for both humans and machines
is very high (which not unexpected after the exclusion of
both RC spectra and V OT), humans always identify the
correct place more than any other. This not the case with
the best machine arrangement, for which recognition of
velar place is very weak, particularly in CV context. The
cues used in human place recognition are therefore
different from those available to our best ASR system.

The GM classifier with a lar ge number of mix es
can model v ery closely the true data distrib ution and
should therefore approach optimal performance, limited
only by the amount of training data a vailable. If we
accept that the classifier is near optimal for the training
data available, and that the quantity of training data is
reasonable, then the deficiencies in the present GM based
classifier are at least in part due to suboptimal speech
data coding. From Fig.1 it appears that ASR recognition
performance increases steadily as the coding of spectral
dynamics becomes progressively more direct.

5. CONCLUSION

The ED pattern v ector codes both spectral ener gy and
energy change in time directly . What appears to be
missing from this representation is any direct measure of
energy change across frequency, and of ener gy change
across frequency and time together, or spectral slope.

As a first attempt at coding directly for spectral
slope, we could in vestigate appending the follo wing
“diagonal difference” coefficients to the frame coefficient
x(f,t):

x(f+1,t+1) - x(f,t)

x(f,t+1) - x(f+1,t)

As well, or alternatively, we could add non linear terms,
such as the following “cross products”:

x(f,t)*x(f+1,t+1) - x(f+1,t)*x(f,t+1)

Given a sequence of consecutive cepstral, spectral, PLP
or other data frames, F = (f1,f2,...fn), besides making
explicit certain data features, almost an y non linear

projection g(F) of this data will tend to ha ve some
beneficial effect on recognition, because of its tendenc y
to enhance both SNR and data orthogonality [5].

We should also note that the projection used at
any time t may benefit by v arying in accordance with
certain gross features as detected by some function f(F),
such as stationarity [6,7] or texture quality.

In seeking a w ay forwards from here, we should
consider looking to phonetics [2] to indicate the
invariants which we should be trying to mak e explicit,
and to auditory ph ysiology [6] to get some idea of the
kind of feature detectors used by the auditory system.
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